
The Influence of Discontinuities on Waterflooding process 
 

ELENA ANDRIYANOVA, VLADIMIR ASTAFEV, ANDREY KASATKIN 
Department of Oil and Gas Fields Development 

Samara State Technical University 
244, Molodogvardeyskaya st., Samara, 443100  

RUSSIAN FEDERATION 
andriyanovaev@inbox.ru, vladimir.astafev@mail.ru, darantion_yar@mail.ru, http://www.samgtu.ru 

 
Abstract: - The knowledge of the nature of fluid motion in the reservoir allows us to optimize a system of 
oilfield development. Thus, the study of filtration process in reservoirs with discontinuities, such as fractures, 
has a great importance for the oilfield development. For instance, the hydraulic fracturing is one of the most 
common recovery methods for unconventional reserves. The modern level of geophysics can show that most 
reservoirs have the tectonic faults of different permeability which have a great impact on well productivity. 
This article will show the impact of inclusions of different permeability in the reservoir on the waterflooding 
process. The steady-state flow process of incompressible fluid to the production well in a reservoir of constant 
height and permeability is considered. There is a thin area in the reservoir with constant permeability, which 
might be a highly permeable crack or low permeable barrier. The production and injection wells are placed 
inside the reservoir’s external boundary. The characteristics of waterflooding process are studied for various 
permeability values and different locations of a fracture and a pair of wells. Finally, the flow lines of the fluid 
flow will be analyzed for every considered case. 
 
 
Key-Words: - waterflooding, hydraulic fracturing, Darcy flow, impermeable boundary, flow potential, 
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1 Introduction 
Waterflooding is the earliest and the most widely 
used secondary oil recovery technique. It is known 
that more than a half of oil in the world [1] and 
more than 90% of oil in Russia [2] is produced with 
water injection. The main reasons of wide 
application of this method are low cost of water, 
simplicity of the process and high effectiveness [3]. 
The importance of waterfooding causes the actuality 
of study the geophysical factors of the process and 
modeling of oil displacement.  
One of the first printed works devoted to the 
waterfooding is the Muskat’s book [4], where the 
author studied the theoretical fundaments for simple 
models, such as radial and linear flow, and for more 
complex, such as the filtration process from the 
production to injection wells. The last problem is 
well known as “Musket’s problem”, and it is widely 
used for the analysis of more complicated methods.  
In addition to the mathematical models of flow 
processes there are a lot of physical experiments, for 
example in the work [3] the results of tests are 
presented with use of electrical and potential 
models, shape photography and X-rays.  

Nowadays the most part of oil and gas reserves is 
located in low permeable formations, which requires 

new more complicated ways of extraction. 
Profitable production of hydrocarbons usually needs 
application of massive hydraulic fracturing 
technique [4]. So it becomes necessary to predict the 
performance of hydraulically fractured wells and 
evaluate the effectiveness of production system, 
taking into account fracture length and orientation 
[5].  

Mostly the numerical simulation is used for the 
prediction of complicated fluid flow [4], but 
commonly these methods are time consuming. The 
main part of published papers about the 
waterflooding well-placement is dedicated to one 
special case. So we need to develop a new more 
faster and more exact semi-analytical technique to 
estimate the productivity of a well and even the 
most suitable well pattern, taking fractures into 
account.  

This article discusses the fluid flow to a single 
production well in a reservoir with fractures of 
different permeability and shows the impact of such 
inclusions in a reservoir on the waterflooding 
process. The production and injection wells are 
mostly placed as some periodic array of wells [7]. 
This pattern may be considered as element of 
unbounded double periodic array of wells [8].  
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The prediction of shape and motion of the 
boundary between two fluids has a great importance 
for efficiency estimation [8]. The simplest two-
phase filtration model is the model, which assumes 
that oil and water have similar physical properties. 
A more complicated “piston like” model takes into 
account the differences in viscosity and density of 
oil and injected water [8-13].    

Firstly, the analytical model for a simple case 
with single production well is discussed. The 
influence of impermeable boundary or permeable 
fracture is taken into account. Secondly, the 
problem is solved for a pair of wells. This solution 
takes into account all cases of  the well and the 
fracture locations and all values of fracture 
permeability. The steady-state flow process of 
incompressible fluid to the production well is 
considered. There is a thin area in the reservoir with 
constant permeability, kf, which might be a highly 
permeable crack or low permeable barrier. The 
production and injection wells are placed inside the 
reservoir’s external boundary. The task is modified 
by the representation of crack in the section view of 
zero thickness but finite conductivity and by the 
difference of pressure above and below the section. 
In the last part of this paper, the method of 
calculation of water breakthrough time is defined 
and analyzed depending on the change in the input 
parameters. In the final part of the paper, the flow 
lines of the fluid flow are analyzed for every 
considered case. 

 
 
2 Problem Formulation 
We consider a plane stationary flow of 
incompressible fluid to the vertical production well 
in an isotropic porous medium. Filtration process is 
described by the Darcy's law and by the equation of 
incompressibility: 
                        

pgradkVyxVdiv )/(,0),( µ−==


,          (1) 
 
where (x,y) is the velocity vector of fluid filtration, 
μ is the fluid viscosity, p(x,y) is the pressure in the 
liquid, k is the reservoir permeability and h is the 
thickness of the reservoir. 
Let us consider, that in plane (x,y) in the reservoir 
with the external boundary of radius Rc at the point 
M1(x1,y2) is placed the production well of radius rw 
with a flow rate Q and at the point M2(x1, y1) is 
placed the injection well of the same radius. Inside 
the external boundary there is a crack with length 2l 

and thickness 2δ (δ << l) and permeability kf. Let us 
consider that the crack is oriented along the axis x, 
and its center coincides with the origin plane (0, 0) 
(Fig. 1). 

 
 

Figure 1 Production and injection wells and 
fracture places in the plane. 

 
 
2.1 Model for a single well 
To find the field of velocities, it is necessary to 
define the flow potential. Then, as described in work 
written by Astafiev and Fedorchenko [14 ], the flow 
potential for the radial flow to the single production 
well, can be represented in the next form: 
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where q= µQ/(2πkh)  is the modified flow rate, cn is 
unknown coefficients in the expansion in a Laurent 
series of the disturbance caused by the presence of 
reservoir heterogeneity and decaying at infinity.  

Many authors, for example Prats [15] and 
Kanevskaya [16, 17] solved this problem for the 
hydraulic fracturing or symmetrical case, when the 
well is located on the fracture line. In that case we 
need the parameter Fcd, dimensionless fracture 
conductivity, as the fluid just flows into the fracture 
and then the flow to the well occurs inside the 
fracture. But if we consider nonsymmetrical case, 
when the well is located at some distance from the 
fracture, or we have a couple of injection and 
production wells, we need to evaluate the inflow 
and the outflow from the fracture. In the paper, 
published earlier by Astafiev and Fedorchenko [14], 
the problem was solved with the assumption that the 
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pressure is the same on the upper and lower banks 
of the crack. Now we consider the case with the 
difference of pressure above and below the section, 
and we use more complicated boundary conditions 
[18-22]: 
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where Φ+  and Φ- are the flow potentials above and 
below the section, coefficient  a0=δkf/lk  is similar to 
Fcd for the hydraulic fractures and β0=δk/lkf is very 
important for the impermeable case. 

In the papers, published by Astafiev and 
Andriyanova [18, 19, 22], the flow potential was 
expressed by the next equation: 
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where ν is a new variable after the mapping by the 
Zhukovsky function z=l(ν+ν-1)/2, z=x+iy and it is 

equal to 
θρηξ ieiv =+= , 0

00
θρ iev = . 

In case when θ0=0 or θ0=π, in other words, if the 
well is located on the x axis, this solution coincides 
with the solution obtained in the work written by 
Astafiev and Fedorchenko [14]: 
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2.1 Model for a pair of wells 
Considering the case when we have a pair of wells, 
the flow potential can be expressed by the next 
equation: 
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If we map by the Zhukovsky function             
z=l(ν+ν-1)/2 and  consider the case when q1=1 and 
q2=-1 or injection and production wells, flow 
potential can be written as follows: 
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found from the boundary conditions (3) as follows: 
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So, if we insert (7) into (6), the flow potential 

can be expressed by the following form: 
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If we consider that wells are located at the y axis, 

symmetrically from the fracture, or 

ρ1=ρ2=ρ0
2;2 21 πθπθ −== , ν1=iρ0; ν2=-iρ0;, 

then: 
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The results show us that the case when wells are 

located on the y axis, symmetrically from the 
fracture and the fracture is highly permeable 
coincides with the Muskat’s problem [7].  
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For the case when α0= ∞ and β0=0, flow lines 

are shown in Fig. 2 (upper) and the flow potential 
can be expressed as follows:  
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For α0=0 and β0= ∞, (Fig. 2, lower) the flow 

potential is equal to the Muskat’s problem [7] and it 
can be expressed as follows: 

 

( ) ( )( )
( )
( ).)(1

)(1
)(
)(

ln

1
)(
)(

ln)(

1
2

1
1

2

1

1
21

2

1

−

−

∞

=

−−

−
−

−
−

=

=−+
−
−

= ∑

νν
νν

νν
νν

νννν
νν
νν

νϕ
n

nn

n
  (10) 

 
So for any cases, when the pair of wells is 

located symmetrically from the discontinuity for 
permeable fracture, the flow lines are similar to the 
flow without a fracture [7]. 
 
 
3 Flow lines and numerical 
calculations of waterflooding 
parameters 
For the analysis of the oil-water boundary located 
between production and injection wells it is 
necessary to solve the following differential 
equation in complex variables [8]: 
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where m is the porosity of the reservoir, “+” before 
the sum relates to the case α0= ∞ and β0=0, and “-“ 
relates to the case α0=0 and β0= ∞. 

The initial condition at the time t=0 is: 
 

θθ i
werzz += 2)0,(   (12) 

 
where z2 is the center of the injection well, rw is the 
radius. 

If we have two different liquids in the system, we 
face a new type of problems, when we have two 
areas filled with water and filled with oil. So both 
moving liquids need their own flow potential. 
Pressure and normal component of velocity should 
be continuous at the boundary between fluids, but 
flow potentials can be different [4]. To simplify this 
difference in our calculations we consider that the 
viscosity and density of fluids are the same. For the 
solution of the equation (11) with initial condition 
(12) we use the Runge-Kutta methods [8]. 

In the Fig. 2-7 we can see the results of 
calculations for several cases of wells and fracture 
locations for permeable and impermeable 
discontinuity. Different colors in these pictures  
show the boundaries between the flooding stages, so 
we can predict the water front at any moment, and 
water breakthrough time (the first colored zone, 
counting from the injection well, is the waterflooded 
area, from the beginning of the process to the half of 
the process; the second zone in the pictures is the 
waterflooded area, from the ½ of the process to the 
¾ of  the process; the third zone – the waterflooded 
area, from the ¾ of the process to the  water 
breakthrough time; the last colored zone or the 
closest to the production well is the waterflooded 
area at the breakthrough time).To sum up the nature 
of fluid flow to a wellbore at different locations of 
the crack and the well for different values of the 
coefficients α0 and β0 are shown in Fig. 2-7. As we 
can see, the obtained flow potential equation allows 
us to solve the problem for any wells and fracture 
locations and for different fracture conductivity. In 
the upper figures there is the permeable fracture 
(α0=∞; β0=0) and if we place the well in the center 
of the fracture, we can see the hydraulic fracturing 
case. In the lower figures there is the impermeable 
fracture (α0=0; β0=∞), which acts like an 
impermeable boundary. 
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Figure 2  Streamlines of a  waterflooding 
process. The injection well is located at the 

point (0,-1), the production well is located at 
the point (0, 1); for the values of α0=∞; β0=0 

(upper) and α0=0; β0=∞ (lower). 
 

 

Figure 3  Streamlines of a waterflooding 
process. The injection well is located at the 

point (0, -1.5), the production well is located at 
the point (0, 0.5); for the values of α0=∞; β0=0 

(upper) and α0=0; β0=∞ (lower). 
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Figure 4  Streamlines of a waterflooding 
process. The injection well is located at the 

point (0, -0.5), the production well is located at 
the point (0, 1.5); for the values of α0=∞; β0=0 

(upper) and α0=0; β0=∞ (lower). 

 

Figure 5  Streamlines of a waterflooding 
process. The injection well is located at the 

point (-0.5, -1), the production well is located at 
the point (0.5, 1); for the values of α0=∞; β0=0 

(upper) and α0=0; β0=∞ (lower). 
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Figure 6 Streamlines of a waterflooding a 
process. The injection well is located at the 

point (-0.5, -1.5), the production well is located 
at the point (0.5, 0.5); for the values of α0=∞; 

β0=0 (upper) and α0=0; β0=∞ (lower). 
 

 

 
 

Figure 7  Streamlines of a waterflooding 
process. The injection well is located at the 
point (-0.25, -0.25), the production well is 

located at the point (0.75, 1.25); for the values 
of α0=∞; β0=0 (upper) and α0=0; β0=∞ 

(lower). 
 
 
4 Conclusion 
In this work the mathematical model of 
waterflooding process at the presence of a fracture 
of different permeability has been done. The 
solution obtained by the replacement of ellipse like 
approximation to the section view of zero thickness 
but finite conductivity. The more general boundary 
conditions were considered taking into account the 
pressure difference above and below the section. 

WSEAS TRANSACTIONS on FLUID MECHANICS Elena Andriyanova, Vladimir Astafev, Andrey Kasatkin

E-ISSN: 2224-347X 140 Volume 11, 2016



Thus the more general equation was obtained for the 
flow potential which coincides with previous 
solutions. This solution is suitable for any cases of 
various well and fracture places and for different 
values of fracture permeability.  

In the final part of the paper the nature of fluid 
flow was analyzed. It was concluded that for a case 
when wells are located symmetrically from the 
fracture, the permeable fracture does not influence 
on the flow. The streamlines of the waterflooding 
process were calculated. The method of calculation 
of the position of water front and water 
breakthrough time was received.  

The problem has enough interest from the 
petroleum engineers. Further development of the 
solution is to present the flow potential through 
singular integral equations, which will greatly 
expand the applications. 
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